top of page

20.04.2021

12:30-13:00 EEST

11:30-12:00 CET

10:30-11:00 BST

Fotokleiner.jpg

Felix Plamper 

Institute of Physical Chemistry,

TU Bergakademie Freiberg

Germany

Deflecting Polymer Systems from Equilibrium

Abstract:

We present different strategies to impose non-equilibrium situations for colloidal polymer systems. Such non-equilibrium situations can be beneficial for e.g. energy storage. Additionally, they could allow stimulated property changes at otherwise constant conditions. In this case, the non-equilibrium state must be preserved and released toward equilibrium state upon will. This behavior is demonstrated for self-assembled nanostructures [1]. Low viscosity dispersions of spherical micelles can be transformed on their way toward equilibrium to a network of worm-like micelles forming a gel. As an advancement, the non-equilibrium nature of interpolyelectrolyte complex micelles can even be recycled after approaching equilibrium [2].

Alternative approaches for non-equilibrium polymer systems comprise electroactive polymers. We have introduced electroactive micellar systems, where the micelle formation/destruction is controlled electrochemically [3]. This allows an electrochemical manipulation of the interfacial tension [4]. We further present electroactive microgel systems. One attempt is based on the electrochemical switching of guest ions [5], leading to a reversible swelling/deswelling of the microgel hosts [6]. Another attempt addresses electroactive microgel colloids with permanently linked redox-active units [7]. They can be used to release and capture active molecules reversibly with concomitant size changes of the microgels by purely electrochemical means [8].

 

References:

[1] Steinschulte, A. A.; Scotti, A.; Rahimi, K.; Nevskyi, O.; Oppermann, A.; Schneider, S.; Bochenek, S.; Schulte, M. F.; Geisel, K.; Jansen, F.; Jung, A.; Mallmann, S.; Winter, R.; Richtering, W.; Wöll, D.; Schweins, R.; Warren, N. J.; Plamper, F. A., Adv. Mater. 2017, 1703495

[2] Dähling, C.; Houston, J. E.; Radulescu, A.; Drechsler, M.; Brugnoni, M.; Mori, H.; Pergushov, D. V.; Plamper, F. A. ACS Macro Letters 2018, 7, 341.

[3] Plamper, F. A.; Murtomäki, L.; Walther, A.; Kontturi, K.; Tenhu, H. Macromolecules 2009, 42, 7254–7257.

[4] Prasser, Q.; Steinbach, D.; Kodura, D.; Schildknecht, V.; König, K.; Weber, C.; Brendler, E.; Vogt, C.; Peuker, U.; Barner-Kowollik, C.; Mertens, F.; Schacher, F. H.; Goldmann, A. S.; Plamper, F. A. Langmuir 2021. ASAP

[5] Mergel, O., Gelissen, A. P. H., Wünnemann, P., Böker, A., Simon, U.; Plamper, F. A., J. Phys. Chem. C 2014, 118, 26199.

[6] Mergel, O., Wünnemann, P., Simon, U., Böker, A.; Plamper, F. A., Chem. Mater. 2015, 27, 7306.

[7] Schneider, S.; Jung, F.; Mergel, O.; Lammertz, J.; Nickel, A. C.; Caumanns, T.; Mhamdi, A.; Mayer, J.; Mitsos, A.; Plamper, F. A. Polym. Chem. 2020, 11, 315–325.

[8] Mergel, O.; Schneider, S.; Tiwari, R.; Kühn, P. T.; Keskin, D.; Stuart, M. C. A.; Schöttner, S.; Kanter, M. de; Noyong, M.; Caumanns, T.; Mayer, J.; Janzen, C.; Simon, U.; Gallei, M.; Wöll, D.; van Rijn, P.; Plamper, F. A. Chem. Sci. 2019, 10, 1844.

bottom of page