top of page

18.09.2020

17:30-18:10 EEST

16:30-17:10 CET

15:30-16:10 BST

alexander_kabanov_directory_photo.jpg

Alexander Kabanov

Center for Nanotechnology in Drug Delivery and Carolina Institute for Nanomedicine, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill,  USA

Super-High Capacity Polymeric Micelles for Cancer Therapeutics…and Few Words about Covid-19 Therapeutics

Abstract: Poly(2-oxazoline) polymeric micelles (PM) display unprecedented high loading with respect to water-insoluble active pharmaceutical ingredients (APIs). This drug delivery platform greatly enhances the solubility and stability of drugs and drug candidates and improves their efficacy and safety in a transformative way. The technology has been validated for more than 20 extremely poorly soluble APIs. The injectable aqueous solutions are readily prepared that are stable and contain up to 50-100 g/L of extremely poorly soluble APIs, at least 10 to 100 times greater amounts than most other solubilization methods. The drug to excipient ratio in poly(2-oxazoline) PM is also 10 to 100 times better than the ratios of excipients in other approaches. One example is a Cremophor- and PEG-free paclitaxel in poly(2-oxazoline) PM. It has demonstrated potential to increase treatment efficacy of cancers by using high-dose therapy and shown superiority in treatment of tumors in animal models when compared to marketed paclitaxels. For many of the drug candidates, poly(2-oxazoline) PM platform represents the only possibility for a parenteral drug application and enables major contribution to patient care. Chemo-sensitizing agents and agents modifying tumor microenvironment in poly(2-oxazoline) PM were shown to improve chemo- and immunotherapy of cancers in both prevalent and orphan diseases in animal models. Poly(2-oxazoline) PM platform allows easy co-formulation of multiple APIs to 1) decrease burden of administering these APIs separately to a patient in combination drug therapy, and 2) improve treatment efficacy by simultaneous delivery of these APIs to biological targets. Superior antitumor activity of PM with co-loaded drugs compared to single drug micelles or their combination was demonstrated. A rational, computer-aided approach to reliable selection of hydrophobic molecules with dramatically improved solubility in poly(2-oxazoline) PM was developed to enhance the throughput and success of formulation development for new APIs. The work has been supported by the United States National Institutes of Health (1U54CA198999).

bottom of page